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Abstract. A new electromagnetic kinetic electron simulation model that
uses a generalized split-weight scheme, where the adiabatic part is adjustable,
along with a parallel canonical momentum formulation has been developed in
three-dimensional toroidal flux-tube geometry. This model includes electron-
ion collisional effects and has been linearly benchmarked. It is found that
for H-mode parameters, the nonadiabatic effects of kinetic electrons increase
linear growth rates of the Ion-Temperature-Gradien-Driven (ITG) modes,
mainly due to trapped-electron drive. The ion heat transport is also in-
creased from that obtained with adiabatic electrons. The linear behavior of
the zonal flow is not significantly affected by kinetic electrons. The ion heat
transport decreases to below the adiabatic electron level when finite plasma
B is included due to finite-8 stabilization of the I'TG modes. This work
is being carried out using the ”Summit Framework.” Progress on Summit,
an open-source framework for both local and global massively parallel gy-
rokinetic turbulence simulations with kinetic electrons and electromagnetic
perturbations, is reported.

1 Introduction

Kinetic electron physics is currently a primary challenge in the simulation of
magnetic fusion turbulence and transport. Until recently, the vast majority
of three-dimensional gyrokinetic particle simulations with realistic geometry
have used the adiabatic electron approximation [1, 2, 3, 4]. The difficulty with
a fully kinetic treatment of electrons in gyrokinetic particle simulations using
the §f-method arises from the fact that for typical tokamak plasmas, where
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the electron and ion temperatures are of similar magnitude, the electrons
move a factor of ~ y/m;/m, (m; and m, are the masses of the ion and the
electron) faster than the ions along the magnetic field. This poses a stringent
constraint on the time step, the Courant condition kjvrAt < 1. To over-
come this constraint a new kinetic electron model that uses a generalized
split-weight scheme [5], where the adiabatic part is adjustable, along with
a parallel canonical momentum formulation has been previously developed
and benchmarked in simple geometry [6]. This is done in three-dimensional
toroidal geometry using field-line-following coordinates [7]. The high-3 prob-
lem in kinetic electron simulations with electromagnetic effects [6] has been
solved recently [8]. We have also implemented a Monte-Carlo electron-ion
collisional algorithm and the code has been linearly benchmarked in toroidal
geometry with the continuum codes GS2 [9] and GYRO [10]. This particle
simulation method can now model the electron dynamics with a time step
only one-third smaller than the time step typically used in adiabatic electron
simulations. In this paper we present representative simulation results on
ITG turbulence and transport using this new capability. The simulations are
performed for a model plasma with H-mode parameters, the Cyclone DIII-D
Base Case [11]. Our focus here is on low-3, essentially electrostatic, simula-
tions, however, the effects of magnetic field perturbations on ITG turbulence
and transport due to finite-/ are also discussed.

A second kinetic electron model based on closing zero-inertia drift-fluid
equations has been developed [12, 13, 14] and progress is being made sim-
ulating electromagnetic turbulence. This model is now running in a three-
dimensional toroidal flux-tube geometry and benchmarking with the fully
kinetic electron code is underway. This algorithm addresses the physics
regime of higher plasma beta, but not so high that compressional Alfven
physics needs to be included. All the gyrokinetic simulation work reported
here is being carried out jointly through a multi-institutional collaboration
called the "Summit Framework.” Summit is an open-source framework for
both local and global massively parallel gyrokinetic turbulence simulations
with kinetic electrons and electromagnetic perturbations [15]. This frame-
work, written in Fortran 90, provides a unified object-based environment for
sharing common components. Work is underway through Summit to include
the kinetic electron models reported here, realistic magnetic geometry using
quasi-ballooning coordinates [2] and global effects [16] under one software
environment. This will allow the scientist to choose the physics components
(and associated numerical advantages and disadvantages) most appropriate
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for the given problem at hand.

The paper is organized as follows. In Section 2 the algorithm for sim-
ulating kinetic electrons with electromagnetic perturbations is summarized.
In Section 3 the algorithm for the extended hybrid scheme that is to be in-
cluded in the Summit Framework is described and the current status on code
development is reported. Simulation results for the DIII-D base case using
the kinetic electron model as described in Section 2 are presented in Section
4. A summary is given in Section 5.

2 Kinetic electron model

Three analytical /numerical techniques are used to make possible the direct
simulation of kinetic electrons in three-dimensional geometry with electro-
magnetic perturbations. First, a canonical parallel momentum formula-
tion [17] is used to eliminate numerical instabilities associated with finite-
differencing of the 0A,/0t term in the parallel electric field, E, = —V ¢ —
0A,/0t. Second, a split-weight method [5, 6] is used for the electrons that per-
mits larger timesteps. Third, careful numerical evaluation of the (w?,/c*)A4,
term that appears in Ampere’s law in the canonical parallel momentum for-
mulation (described in more detail below) permits accurate electromagnetic
simulations at moderate beta.

We begin by briefly describing the canonical momentum formulation
where pjo = Vo + (¢a/ma) (4;) is used as a coordinate. The gyrokinetic
equation is then

0fa . O0fa
i‘f'VGa'Vfofi‘puoz—azf =
llo

e C(f) 1)

where a = 1, €,

Pla = T(ZL_"“B -V (p) — &B -VB+v4(b-Vb)-vg + %VGa -V (A, (2)

ma o
_ T . o 7. . ™ _ <5BJ_>
VGa = Vjab + V4o + Vg is the guiding center velocity. b = b + 5
v2 402 /2
Vo = ”QT;B x VB is the drift velocity for low 3 tokamak plasmas with

g < 1, vg = (E) x b/B. The electrons are described by the drift-kinetic
equations due to their small gyro radii, hence (¢) = ¢, etc., for electrons.
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C(fa) is a collision operator. We do not consider collision effects on ions,
C(f;) =0, and use a Lorentzian operator for electrons, C(f.) = Cr(fe):

10 0

=v,—— (1 =)\)—

CL(fe) VeQa)\( A )aAfe (3)
4

_ Nge€ InA 5

Ve = 471'637)12’1)3 (Zeff + Hee (\/ mev /2T0e )) (4)
. e~ 1
with Hee(z) = NG +(1- ﬁ)erf(x).

The ions are simulated using the usual §f method. Define f; = fo; + df;
with fo, the Maxwellian distribution in pjo (€4 = ma(v?, +p3,)/2),

Noa _ T
an = € sa/ “, (5)
(2m)3/2v3,

where myv3, = Toa. Of; evolves according to

dsf; 5B 0o
e —(U||i—L+VE)'VfOi—5ia—; (6)

B
where 52 = U;VGi- VB + m; Py p||z

A fraction of the adiabatic part of the electrons perturbed distribution is
treated separately in the split-weight scheme. Thus we write

afOe
fe = fOe - 696¢ 686 + h. (7)
The distribution h evolves according to
dh 6BL . 8.f08
- Cr(fe) = —(Uue? +vE) -V foe — 868—86
o9 O foe
+ege(a + Vge - Vo) 9o, (8)

A Monte-Carlo scheme for the collision operator Cf(f.) is described in Sec-
tion 4.

The electric potential ¢ and its derivative (;5 = 0¢/0t are computed from
the gyrokinetic Poisson equation [18],

2 2

—¢=Qi/(5fi5(R+p—x) dev—e/hdv 9)
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and its derivative

2
T01(¢ ¢) -V /szzVGl (R+p X) dRdv+V- /efev(;e dv (10)

respectively. In Eq. 9 and Eq. 10 p is the vector leading from the gyro-center
R to the particle position X, ¢ is defined as

Zro (K202, /92) by, exp(ik - x) (11)

TNoi

with ¢ = >, ¢ exp(ik - x). ¢ and é are similarly defined.
The vector potential A, is given by Ampere’s law

w?
( A 2 )A” (qi/éfiv” S(R+p—x) dev—e/hv” dv)

(12)
The (w2,/c*) Ay term in this equation comes from the zero-order distribution
foe which is Maxwelian in p,. In previous implementation of the split-weight
scheme [6] which uses Eq. 12 directly it is found that at moderate § the
Alfvén wave frequency and ITG mode growth rate deviate from the linear
dispersion relation significantly. This problem can be solved by evaluating
the (w?,/c*)A; term using the same marker particles and the same scattering
operation as that used for the h term in Eq. 12. That is,

w2, 174
c—gAn ~ ﬁiNTZpﬁjAll (x7)S(x — x;)- (13)
J

Here 7 = Ty /Toe, N is the number of electrons used in the simulation, V' is
the volume of the simulation box. f; = uonoZo;/ Bg is related to the total
plasma S through g = 2(1+1/7)5;. S(x) is the particle shape function used
to deposit particle current to neighboring grids. The resulting form of the
Ampere’s equation has a matrix that depends on the particle coordinates
and time and is three-dimensional. The detailed algorithm will be presented
elsewhere [8]. For very low (3 cases (8;m;/me < 1) that are essentially
electrostatic Eq. 12 is used for better computational efficiency.

3 Kinetic electron extended hybrid algorithm

A hybrid simulation scheme that includes electromagnetic effects has been
previously proposed and study in a slab geometry shows that it can ade-
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quately simulate the shear Alfven waves and the finite beta effects on the
ITG waves [12]. In this hybrid model ions are treated as gyrokinetic while
electrons are described by fluid equations. Recently a kinetic electron clo-
sure valid for Bm;/me > 1 has been introduced [13, 14]. The new algorithm
incorporates Jf drift-kinetic electrons whose number-density moment is used
to close the electron fluid momentum equation (Ohm’s law). A toroidal
extension of the hybrid algorithm has been formulated, and the code imple-
mentation is being validated. Two-dimensional slab test cases have examined
small-amplitude kinetic shear-Alfvén waves with electron Landau damping,
the ion-temperature-gradient instability, and the collisionless drift instability
in an unsheared slab as a function of 8 [13]. The scheme, which is to be in-
cluded as part of the Summit Framework, can be summarized as follows. The
electron distribution function is given as f, = foe + (6n§,0)/ Noe) foe + h, where
onl” is the lowest-order fluid component of the perturbed electron density.
The total perturbed electron density 6n, = dn{” +6n& (5nX = [ hdv) is ob-
tained from the electron continuity equation deduced from the electron drift-
kinetic equation. A is advanced in time according to 0A, /0t = —V ¢ — E|.
E, is obtained from the parallel Ohm’s law which utilizes a kinetic closure for
the electron pressure [19]: VP, = V”P”(g) + ﬂfg)vuéngo) + nge V01, where
V,=b-V. V(T + 6T ,.) = 0 is imposed [19], T(¢? is the equilibrium
temperature (including gradients) and P”(g ) = noeT1c*?. Non-adiabatic ki-
netic corrections to the pressure moment are higher order in (w/kvr.)? than
are the terms coming from the adiabatic response [11]. With the updated A,
Ampere’s law determines the parallel electron current (needed for evolving
the electron continuity equation): engetje = (1/p0)V2 A, + 0j,i, where &5
is the perturbed parallel ion current. The electrostatic potential is obtained
from the quasi-neutrality condition using the updated total electron and ion
charge densities. Once A, and ¢ are available, ion and electron coordinates
and weights are evolved according to the ion gyrokinetic equation and the
electron drift kinetic equation written in terms of A.

With electron inertia retained in the extended hybrid algorithm, the
scheme is numerically unstable for §;m;/m. <1, because the Alfvén velocity
then exceeds the electron thermal velocity and the electron response is there-
fore not adiabatic. For k, p; > 1, the value of 5; below which the extended
hybrid algorithm is badly behaved increases. However, when the electron
inertia is neglected in the electron fluid momentum balance (valid if the fluid
response is dominantly adiabatic), the value of §; below which the extended



hybrid algorithm is badly behaved decreases substantially. The kinetic ex-
tended hybrid scheme remains useful over an interestingly large range of (;
for including kinetic electron corrections when the electrons as a whole are
dominantly adiabatic.

In sheared-slab configurations, the electron response transitions from hy-
drodynamic to resonant and lastly to adiabatic as a function of distance from
the mode rational surface where k; = 0. Because the formal expansion of
the kinetic extended electron hybrid equations is around an adiabatic fluid
response like the expansion in Lin and Chen [20], this treatment is invalid in
the resonance layer near the mode rational surface. When trying to simulate
the ion-temperature-gradient instability in a sheared slab using the hybrid
algorithm, we observed enhanced Alfvénic noise and growing modes (that sat-
urated), but no easily identifiable ITG signal. In a torus the mode structure
along the field line is finite in extent, and it is argued that the slab branch
is not as important as the toroidal branch in driving transport because the
radial scales of the slab branch are narrow. It remains to be investigated
whether the hybrid algorithm is practical in toroidal configurations, and this
effort is in progress.

4 Simulation results with kinetic electrons

In this section we present linear and nonlinear simulation results for a rep-
resentative tokamak plasma, the DIII-D Cyclone Base Case [11]. We first
summarize the geometry and computational method as follows. An equilib-
rium with concentric flux surfaces is assumed. The magnetic field strength
is B(r,0) = By(1 — (r/Ry)cosf). The field-line-following coordinates [7]
(x,y,2) are defined by z = r — 19, y = (r0/q)(¢f0 — {) and z = goR,0.
Here (7,6, () are the usual toroidal coordinates, Ry is the major radius at the
magnetic axis, ry is the minor radius at the center of the simulation domain,
qo = q(ro) the safety factor. The size of the simulation box along the field
line is 2mqoRy. Periodic boundary conditions are used in x and y, while the
toroidal boundary condition [7] is used in z. A predictor-corrector scheme is
used to advance particle coordinates and weights. The field equations Eq. 9,
Eq. 10 and Eq. 12 are solved spectrally [6]. The Lorentz operator Cp(f) is
implemented as follows. From Eq. 7

af Oe

CrL(fe) = Cr(foe(py)) — CLleg9 e,

) + Cr(h). (14)



The €, term is nonlinear and will be neglected. The first term is given by,

CL(fOe(pll)) = _TVeAllfOea (15)

which is implemented as an additional term in the electron weight equation.
The third term on the RHS of Eq. 14 is implemented using a Monte-Carlo
method [21, 22],

Anew = Aoa(1 — 16t) + [(1 = N2) vebt] /2, (16)

where + means equal probability of + or — [21]. §t = At for the corrector
step and 0t = 2/t for the predictor step, At is the time step of the simulation.

In the following simulations we use the DIII-D base-case parameters:
RO/Ln = 22, Ro/LT = 69, T()i = Toe, To/RO = 018, Go = 14, § =
(ro/qo)(dg/dr) = 0.78. Most of the simulation results are obtained with
B; = 10~*. This small §; is not important physically and the simulations
are essentially electrostatic. However, the small but nonzero (; allows an
increased time step, possibly because the high frequency wy mode [23] is
avoided. In all the simulations with kinetic electrons the mass ratio is
m;/m. = 1837, the split-weight parameter is ¢, = 0.5. Fig. 1 shows the
growth rate and frequency of the kgp; = 0.3 mode as a function of Ry/Ly
for v,; = 0. Also shown are the results from the GS2 code with kinetic elec-
trons. Very good agreement is seen between GS2 results and those from the
split-weight particle code. For the base case Ry/Lt; = 6.9, the linear growth
rate with kinetic electrons is vL, /vt = 0.21. The result obtained from sim-
ulations with adiabatic electrons is yL,/vr; = 0.12. In the kinetic electron
simulation we can treat the passing electrons as adiabatic and follow only the
trapped electrons. The growth rate thus obtained is very close to the kinetic
electron result, hence the increase of the growth rate from the adiabatic elec-
tron result is mainly due to the nonadiabatic effect of the trapped electrons.
Fig. 2 shows the mode growth rate as a function of kgyp; for the base case with
VeiLyn/vri = 0.136. Results from both kinetic electrons and adiabatic elec-
trons are shown. The results are obtained from linear simulations in which
only a single kyp mode is retained.

Fig. 3 shows the evolution of the ion heat diffusivity x; (ion heat flux
<f dvt - vE%miv25fi> normalized by 1/Lt;) with R/Ly; = 6.9, for three cases:
(a) with kinetic electrons, 3; = 107* and v; L, /vr; = 0.45; (b) with adiabatic
electrons; and (c) with kinetic electrons, §; = 0.002 (corresponding to total
plasma 8 = 0.008) and veL,/vr; = 0.136. The result for §; = 0.002 will
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be discussed later. The case (a) result is obtained with a simulation box of
lz = 1, = 128p; resolved by 128 x 128 grids in the  —y plane. The number of
grid points in the z direction is 32. A total of 16 777 216 particles per species
is loaded, and a time step of At w; = 4 is used. As can be seen from (a) and
(b), with kinetic electrons the ion heat diffusivity is about x;/p;vr; = 0.01,
significantly increased from that with adiabatic electrons, x;/p;vri = 0.0065.
This is roughly consistent with the increase in linear growth rates (See Fig. 2).
As a result of the nonadiabatic effect of the electrons, a finite particle number
flux is observed in the simulation corresponding to case (a), which is also
shown in Fig. 3 (normalized by 1/Ly;). The turbulent particle transport
is intrinsically ambipolar (consistent with the assumption and use of the
quasineutrality relation), with a diffusivity of about D;/p;vri = 0.016.

The nonlinear result with kinetic electrons in case (a) of Fig. 3 is con-
verged with respect to the size of the simulation box and particle numbers.
Fig. 4 shows the results of this convergence test. The cases shown are: (i)
box size I, x I, = 64p; x 64p;, 4 194 304 particles per species; (ii) I, x I, =
128p; x 128p;, 8 388 608 particles per species; and (iii) I, x I, = 128p; x 128p;,
16 777 216 particles per species corresponding to case (a) in Fig. 3. Grid sizes
are Az = Ay = p;, Nz = 1,/32. Time step wsAt = 4, vei/we = 1073, One
can see that convergence with respect to box size and particle number is
achieved with a box size of 64p; X 64p; and 32 particles per grid cell. In
all the nonlinear simulations with kinetic electrons presented here a finite
collision rate is used. It is observed that collisionless simulations with ki-
netic electrons do not saturate well. This might be indicative of a subtle role
played by dissipation in gyrokinetic simulations, as pointed out by Krommes
[24].

Since the turbulence-generated zonal flow plays an important role in reg-
ulating turbulence and transport [25], it is of interest to study the effects of
kinetic electrons on the evolution of the Geodesic Accoustic Mode (GAM)
and the residual zonal flow [26, 27]. Theory predicts no significant change
due to kinetic electron effects. Fig. 5 shows the evolution of the GAM with
kinetic electrons (the solid line) and adiabatic electrons (the dashed line).
A scan of the residual zonal flow level with changing ¢ is shown in Fig. 6,
where the residual zonal flow level ¢(00)/¢(0) is plotted as a function of
h =+/2/q*® (¢ = 19/ Ry). The line is predicted by the Rosenbluth-Hinton the-
ory [26, 27] assuming adiabatic electrons. The simulation is initialized with
a perturbed ion density while the perturbed electron density is set to zero.
Only the ky = 0 mode is retained and the simulation is linear. As can be seen
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from Fig. 5 and Fig. 6 the residual level of the zonal flow is not significantly
changed by kinetic electrons. This is consistent with the nonlinear results
shown in Fig. 3, which shows an increase of the saturated ion heat flux that
can be understood based on linear physics.

We now briefly discuss the finite-3 effects on the I'TG turbulence and
transport. The frequency and growth rate of the kyp; = 0.3 mode as a
function of plasma [ for the base case is shown in Fig. 7. At low 3, § <
2%, the ITG branch dominates, while at higher 8 the Kinetic Ballooning
Mode is dominant. As [ is increased from zero the ITG modes becomes
less unstable due to finite-/3 stabilization, and one expects that the saturated
ion heat flux is also reduced from the electrostatic level. This can be seen
from the § =0.8% case in Fig. 3, which shows a saturated x; below the
adiabatic electron level. The experimentally measured ion heat diffusivity
for the DIII-D shot (shot #81499 at time t=4000ms, for which the base case
parameters are based on) is x; = 3.5 x 107* [11] in the unit of Fig. 3, much
lower than the adiabatic electron level. Although a direct simulation of the
experiment is not attempted here, as we do not yet have effects such as profile
variation, realistic geometry, impurities, etc., in the model, the simulation
results indicate that electromagnetic effects on the ITG turbulence play an
important role in determining the transport level.

5 Summary

In this paper we present simulation results for the lon-Temperature-Gradient-
Driven turbulence and transport using the DIII-D Cyclone Base Case pa-
rameters [11]. The simulations use a Jf gyrokinetic particle method that
includes fully kinetic electrons, three-dimensional toroidal geometry using
field-line-following coordinates and electromagnetic effects. Consistent with
the increased linear growth rates of the I'TG modes due to trapped electron
drive, the saturated ion heat transport is increased from that obtained with
adiabatic electrons. The evolution of zonal flows is not significantly changed
by kinetic electrons, consistent with analytical theory [26, 27]. It is shown
that finite-3 stabilization of the ITG modes can effectively reduce the sat-
urated ion heat transport. The code is implemented as part of the Summit
Framework [15]. Summit is a collaborative effort aimed at both local and
global massively parallel gyrokinetic turbulence simulations with kinetic elec-
trons and electromagnetic perturbations. A hybrid model in which electrons
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are treated by fluid equations with kinetic electron closure is also described.
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Figure 1: Growth rate and frequency of the kgp; = 0.3 mode vs. R/Lr,
comparing the split-weight particle code with GS2. Upper part is for growth
rates. Data points are from particle simulations.
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Figure 2: ITG mode growth rate vs. ky. Upper curve from kinetic electron
simulations, lower curve from adiabatic electron simulations.
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Figure 3: Evolution of the ion heat flux and particle diffusivity for the Base
Case parameters.
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Figure 4: Convergence test with respect to particle number and box size.
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Figure 5: Evolution of the Geodesic Acoustic Mode and the residual zonal
flow. Dashed line is obtained with adiabatic electrons, solid line with kinetic
electrons.
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Figure 6: The residual level of the zonal flow versus magnetic shear. The
line is predicted by Rosenbluth-Hinton theory.
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Figure 7: kgp; = 0.3 mode growth rate and frequency vs. S, showing the
finite g stabilization of the ITG mode and the onset of the Kinetic Ballooning
Mode. Upper part shows data for growth rates.
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